"""
====================
Read DICOM directory
====================
This example shows how to read DICOM directory.
"""
# authors : Guillaume Lemaitre <g.lemaitre58@gmail.com>
# license : MIT
from os.path import dirname, join
from pprint import pprint
import pydicom
from pydicom.data import get_testdata_file
from pydicom.filereader import read_dicomdir
# fetch the path to the test data
filepath = get_testdata_file('DICOMDIR')
print('Path to the DICOM directory: {}'.format(filepath))
# load the data
dicom_dir = read_dicomdir(filepath)
base_dir = dirname(filepath)
# go through the patient record and print information
for patient_record in dicom_dir.patient_records:
if (hasattr(patient_record, 'PatientID') and
hasattr(patient_record, 'PatientName')):
print("Patient: {}: {}".format(patient_record.PatientID,
patient_record.PatientName))
studies = patient_record.children
# got through each serie
for study in studies:
print(" " * 4 + "Study {}: {}: {}".format(study.StudyID,
study.StudyDate,
study.StudyDescription))
all_series = study.children
# go through each serie
for series in all_series:
image_count = len(series.children)
plural = ('', 's')[image_count > 1]
# Write basic series info and image count
# Put N/A in if no Series Description
if 'SeriesDescription' not in series:
series.SeriesDescription = "N/A"
print(" " * 8 + "Series {}: {}: {} ({} image{})".format(
series.SeriesNumber, series.Modality, series.SeriesDescription,
image_count, plural))
# Open and read something from each image, for demonstration
# purposes. For simple quick overview of DICOMDIR, leave the
# following out
print(" " * 12 + "Reading images...")
image_records = series.children
image_filenames = [join(base_dir, *image_rec.ReferencedFileID)
for image_rec in image_records]
datasets = [pydicom.dcmread(image_filename)
for image_filename in image_filenames]
patient_names = set(ds.PatientName for ds in datasets)
patient_IDs = set(ds.PatientID for ds in datasets)
# List the image filenames
print("\n" + " " * 12 + "Image filenames:")
print(" " * 12, end=' ')
pprint(image_filenames, indent=12)
# Expect all images to have same patient name, id
# Show the set of all names, IDs found (should each have one)
print(" " * 12 + "Patient Names in images..: {}".format(
patient_names))
print(" " * 12 + "Patient IDs in images..: {}".format(
patient_IDs))
'[진행] 건강 자료 수집 &amp;amp;amp;quot;해볼까?&amp;amp;amp;quot;' 카테고리의 다른 글
딥 러닝을 활용한 영상 기반 폐 질환 진단 및... (0) | 2020.08.06 |
---|---|
편두통 (0) | 2020.07.17 |
DICOM file info (0) | 2020.07.01 |
자료 받기 (0) | 2020.06.26 |
The result of Naver crawling is useless. (0) | 2020.06.25 |
최근댓글