tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(32, 784), b.shape=(784, 128), m=32, n=128, k=784
[[node sequential/dense/MatMul (defined at O:/PycharmProjects/catdogtf2.2/002.py:58) ]] [Op:__inference_train_function_542]
Blas GEMM launch failed : pyCharm 껐다 켜면 됨. 무적의 옵앤온(off&on)
O:\PycharmProjects\catdogtf2.2\venv\Scripts\python.exe O:\PyCharm\plugins\python\helpers\pydev\pydevconsole.py --mode=client --port=51027
import sys; print('Python %s on %s' % (sys.version, sys.platform))
sys.path.extend(['O:\\PycharmProjects\\catdogtf2.2', 'O:/PycharmProjects/catdogtf2.2'])
PyDev console: starting.
Python 3.7.7 (default, May 6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] on win32
>>> runfile('O:/PycharmProjects/catdogtf2.2/002.py', wdir='O:/PycharmProjects/catdogtf2.2')
2020-08-11 05:03:54.636978: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2.2.0
2020-08-11 05:03:59.300858: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-08-11 05:03:59.345092: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5
coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s
2020-08-11 05:03:59.345646: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-08-11 05:03:59.354065: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-08-11 05:03:59.359976: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-08-11 05:03:59.363292: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-08-11 05:03:59.370767: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-08-11 05:03:59.375232: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-08-11 05:03:59.402544: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-08-11 05:03:59.402886: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-08-11 05:03:59.403354: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-08-11 05:03:59.413780: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x17b3e2401b0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-08-11 05:03:59.414181: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2020-08-11 05:03:59.414663: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5
coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s
2020-08-11 05:03:59.415114: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-08-11 05:03:59.415306: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-08-11 05:03:59.415512: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-08-11 05:03:59.415727: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-08-11 05:03:59.415931: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-08-11 05:03:59.416156: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-08-11 05:03:59.416363: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-08-11 05:03:59.416598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
2020-08-11 05:04:00.086495: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-08-11 05:04:00.086665: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0
2020-08-11 05:04:00.086839: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N
2020-08-11 05:04:00.087157: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6198 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 SUPER, pci bus id: 0000:09:00.0, compute capability: 7.5)
2020-08-11 05:04:00.091100: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x17b8d4b5440 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2020-08-11 05:04:00.091383: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): GeForce RTX 2080 SUPER, Compute Capability 7.5
Epoch 1/5
2020-08-11 05:04:00.883945: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4979 - accuracy: 0.8245
Epoch 2/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3748 - accuracy: 0.8647
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3337 - accuracy: 0.8779
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3118 - accuracy: 0.8850
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2945 - accuracy: 0.8916
313/313 - 1s - loss: 0.3482 - accuracy: 0.8756
테스트 정확도: 0.8755999803543091
# tensorflow와 tf.keras를 임포트합니다
import tensorflow as tf
from tensorflow import keras
# 헬퍼(helper) 라이브러리를 임포트합니다
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\n테스트 정확도:', test_acc)
predictions = model.predict(test_images)
predictions[0]
np.argmax(predictions[0])
test_labels[0]
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions, test_labels)
plt.show()
# 처음 X 개의 테스트 이미지와 예측 레이블, 진짜 레이블을 출력합니다
# 올바른 예측은 파랑색으로 잘못된 예측은 빨강색으로 나타냅니다
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2*num_cols, 2*i+1)
plot_image(i, predictions, test_labels, test_images)
plt.subplot(num_rows, 2*num_cols, 2*i+2)
plot_value_array(i, predictions, test_labels)
plt.show()
# 테스트 세트에서 이미지 하나를 선택합니다
img = test_images[0]
print(img.shape)
# 이미지 하나만 사용할 때도 배치에 추가합니다
img = (np.expand_dims(img,0))
print(img.shape)
predictions_single = model.predict(img)
print(predictions_single)
plot_value_array(0, predictions_single, test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
np.argmax(predictions_single[0])
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
테스트 정확도: 0.8712000250816345
(28, 28)
(1, 28, 28)
[[1.18709238e-08 2.98055518e-08 5.65596814e-09 2.69023825e-08
2.10091784e-08 4.35429800e-04 2.36874556e-07 1.28662065e-02
5.69078793e-06 9.86692369e-01]]
'3D world > AI Integration Engineer' 카테고리의 다른 글
tutorials 04 (0) | 2020.08.11 |
---|---|
tutorials 03 (0) | 2020.08.11 |
tutorial 01 running on pyCharm 2020.2 & 3.7 (1) | 2020.08.11 |
Tensorflow, pytorch (0) | 2020.08.10 |
cat vs dog old ver. & (0) | 2020.07.01 |
최근댓글