Level : WORDPRESS BOOK LINKEDIN PATENT Send Mail 동냥하기 hajunho.com

반응형

import numpy as np

 

import tensorflow as tf

 

#!pip install -q tensorflow-hub

#!pip install -q tfds-nightly

import tensorflow_hub as hub

import tensorflow_datasets as tfds

 

print("버전: ", tf.__version__)

print("즉시 실행 모드: ", tf.executing_eagerly())

print("허브 버전: ", hub.__version__)

print("GPU", "사용 가능" if tf.config.experimental.list_physical_devices("GPU") else "NOT AVAILABLE")

 

# 훈련 세트를 6 4로 나눕니다.

# 결국 훈련에 15,000개 샘플, 검증에 10,000개 샘플, 테스트에 25,000개 샘플을 사용하게 됩니다.

train_data, validation_data, test_data = tfds.load(

    name="imdb_reviews",

    split=('train[:60%]', 'train[60%:]', 'test'),

    as_supervised=True)

 

train_examples_batch, train_labels_batch = next(iter(train_data.batch(10)))

train_examples_batch

 

train_labels_batch

 

embedding = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1"

hub_layer = hub.KerasLayer(embedding, input_shape=[],

                           dtype=tf.string, trainable=True)

hub_layer(train_examples_batch[:3])

 

model = tf.keras.Sequential()

model.add(hub_layer)

model.add(tf.keras.layers.Dense(16, activation='relu'))

model.add(tf.keras.layers.Dense(1))

 

model.summary()

 

model.compile(optimizer='adam',

              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),

              metrics=['accuracy'])

 

history = model.fit(train_data.shuffle(10000).batch(512),

                    epochs=20,

                    validation_data=validation_data.batch(512),

                    verbose=1)

 

results = model.evaluate(test_data.batch(512), verbose=2)

 

for name, value in zip(model.metrics_names, results):

  print("%s: %.3f" % (name, value))

 

  #

  # Copyright (c) 2017 François Chollet

  #

  # Permission is hereby granted, free of charge, to any person obtaining a

  # copy of this software and associated documentation files (the "Software"),

  # to deal in the Software without restriction, including without limitation

  # the rights to use, copy, modify, merge, publish, distribute, sublicense,

  # and/or sell copies of the Software, and to permit persons to whom the

  # Software is furnished to do so, subject to the following conditions:

  #

  # The above copyright notice and this permission notice shall be included in

  # all copies or substantial portions of the Software.

  #

  # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

  # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

  # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

  # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

  # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

  # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

  # DEALINGS IN THE SOFTWARE.

 

 

O:\PycharmProjects\catdogtf2.2\venv\Scripts\python.exe O:\PyCharm\plugins\python\helpers\pydev\pydevconsole.py --mode=client --port=52110

import sys; print('Python %s on %s' % (sys.version, sys.platform))

sys.path.extend(['O:\\PycharmProjects\\catdogtf2.2', 'O:/PycharmProjects/catdogtf2.2'])

PyDev console: starting.

Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] on win32

>>> runfile('O:/PycharmProjects/catdogtf2.2/003.py', wdir='O:/PycharmProjects/catdogtf2.2')

2020-08-11 05:11:11.697892: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

버전:  2.2.0

즉시 실행 모드:  True

허브 버전:  0.8.0

2020-08-11 05:11:14.939954: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll

2020-08-11 05:11:14.981186: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:

pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5

coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s

2020-08-11 05:11:14.981690: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

2020-08-11 05:11:14.987793: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll

2020-08-11 05:11:14.992555: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll

2020-08-11 05:11:14.995107: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll

2020-08-11 05:11:15.000251: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll

2020-08-11 05:11:15.003882: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll

2020-08-11 05:11:15.011752: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll

2020-08-11 05:11:15.012144: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0

GPU 사용 가능

Downloading and preparing dataset imdb_reviews/plain_text/1.0.0 (download: Unknown size, generated: Unknown size, total: Unknown size) to C:\Users\joe\tensorflow_datasets\imdb_reviews\plain_text\1.0.0...

Dl Completed...: 0 url [00:00, ? url/s]

Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]

Dl Completed...:   0%|          | 0/1 [00:00<?, ? url/s]

Dl Size...:   0%|          | 0/80 [00:00<?, ? MiB/s]

Dl Completed...:   0%|          | 0/1 [00:01<?, ? url/s]

Dl Size...:   1%|         | 1/80 [00:01<02:24,  1.83s/ MiB]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Size...:   2%|         | 2/80 [00:02<01:46,  1.37s/ MiB]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Size...:   4%|         | 3/80 [00:02<01:17,  1.00s/ MiB]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Size...:   6%|         | 5/80 [00:02<00:59,  1.25 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Size...:   8%|         | 6/80 [00:02<00:42,  1.73 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:02<?, ? url/s]

Dl Size...:   9%|         | 7/80 [00:02<00:32,  2.22 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  10%|         | 8/80 [00:03<00:25,  2.79 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  11%|        | 9/80 [00:03<00:20,  3.40 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  12%|        | 10/80 [00:03<00:17,  4.01 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  14%|        | 11/80 [00:03<00:15,  4.49 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  15%|█▌        | 12/80 [00:03<00:13,  5.05 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  16%|        | 13/80 [00:03<00:12,  5.50 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:03<?, ? url/s]

Dl Size...:  18%|        | 14/80 [00:03<00:11,  5.93 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  19%|        | 15/80 [00:04<00:10,  6.35 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  20%|██        | 16/80 [00:04<00:09,  6.73 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  21%|██       | 17/80 [00:04<00:09,  6.86 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  22%|██       | 18/80 [00:04<00:08,  6.92 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  24%|██       | 19/80 [00:04<00:08,  7.09 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  25%|██▌       | 20/80 [00:04<00:08,  7.45 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  26%|██       | 21/80 [00:04<00:07,  7.50 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:04<?, ? url/s]

Dl Size...:  28%|██       | 22/80 [00:04<00:07,  7.63 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Size...:  29%|██       | 23/80 [00:05<00:07,  7.68 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Size...:  31%|███      | 25/80 [00:05<00:09,  5.57 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Size...:  32%|███      | 26/80 [00:05<00:08,  6.68 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Size...:  34%|███      | 27/80 [00:05<00:08,  6.32 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:05<?, ? url/s]

Dl Size...:  35%|███▌      | 28/80 [00:05<00:08,  6.24 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  36%|███      | 29/80 [00:06<00:08,  6.10 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  38%|███      | 30/80 [00:06<00:08,  6.10 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  39%|███      | 31/80 [00:06<00:07,  6.16 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  40%|████      | 32/80 [00:06<00:07,  6.08 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  41%|████     | 33/80 [00:06<00:07,  6.13 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:06<?, ? url/s]

Dl Size...:  42%|████     | 34/80 [00:06<00:07,  6.05 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  44%|████     | 35/80 [00:07<00:07,  6.17 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  45%|████▌     | 36/80 [00:07<00:06,  6.31 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  46%|████     | 37/80 [00:07<00:06,  6.33 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  48%|████     | 38/80 [00:07<00:06,  6.40 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  49%|████     | 39/80 [00:07<00:06,  6.39 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  50%|█████     | 40/80 [00:07<00:06,  6.46 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:07<?, ? url/s]

Dl Size...:  51%|█████    | 41/80 [00:07<00:06,  6.46 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]

Dl Size...:  52%|█████    | 42/80 [00:08<00:06,  5.74 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]

Dl Size...:  54%|█████    | 43/80 [00:08<00:06,  5.90 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]

Dl Size...:  55%|█████▌    | 44/80 [00:08<00:06,  5.45 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]

Dl Size...:  56%|█████    | 45/80 [00:08<00:06,  5.25 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:08<?, ? url/s]

Dl Size...:  57%|█████    | 46/80 [00:08<00:06,  5.14 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]

Dl Size...:  59%|█████    | 47/80 [00:09<00:06,  5.14 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]

Dl Size...:  60%|██████    | 48/80 [00:09<00:06,  5.13 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]

Dl Size...:  61%|██████   | 49/80 [00:09<00:06,  5.04 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]

Dl Size...:  62%|██████   | 50/80 [00:09<00:05,  5.08 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:09<?, ? url/s]

Dl Size...:  64%|██████   | 51/80 [00:09<00:05,  5.08 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]

Dl Size...:  65%|██████▌   | 52/80 [00:10<00:05,  5.16 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]

Dl Size...:  66%|██████   | 53/80 [00:10<00:05,  5.21 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]

Dl Size...:  68%|██████   | 54/80 [00:10<00:05,  5.20 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]

Dl Size...:  69%|██████   | 55/80 [00:10<00:04,  5.27 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:10<?, ? url/s]

Dl Size...:  70%|███████   | 56/80 [00:10<00:04,  5.25 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:11<?, ? url/s]

Dl Size...:  71%|███████  | 57/80 [00:11<00:04,  5.35 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:11<?, ? url/s]

Dl Size...:  72%|███████  | 58/80 [00:11<00:04,  4.59 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:11<?, ? url/s]

Dl Size...:  74%|███████  | 59/80 [00:11<00:03,  5.35 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:11<?, ? url/s]

Dl Size...:  75%|███████▌  | 60/80 [00:11<00:04,  4.47 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:12<?, ? url/s]

Dl Size...:  76%|███████  | 61/80 [00:12<00:04,  3.93 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:12<?, ? url/s]

Dl Size...:  78%|███████  | 62/80 [00:12<00:05,  3.47 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:12<?, ? url/s]

Dl Size...:  79%|███████  | 63/80 [00:12<00:05,  3.37 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:13<?, ? url/s]

Dl Size...:  80%|████████  | 64/80 [00:13<00:04,  3.26 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:13<?, ? url/s]

Dl Size...:  81%|████████ | 65/80 [00:13<00:04,  3.20 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:13<?, ? url/s]

Dl Size...:  82%|████████ | 66/80 [00:13<00:04,  3.22 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:14<?, ? url/s]

Dl Size...:  84%|████████ | 67/80 [00:14<00:04,  3.20 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:14<?, ? url/s]

Dl Size...:  85%|████████▌ | 68/80 [00:14<00:03,  3.14 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:14<?, ? url/s]

Dl Size...:  86%|████████ | 69/80 [00:14<00:03,  3.22 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:14<?, ? url/s]

Dl Size...:  88%|████████ | 70/80 [00:14<00:03,  3.28 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:15<?, ? url/s]

Dl Size...:  89%|████████ | 71/80 [00:15<00:02,  3.27 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:15<?, ? url/s]

Dl Size...:  90%|█████████ | 72/80 [00:15<00:02,  3.31 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:15<?, ? url/s]

Dl Size...:  91%|█████████| 73/80 [00:15<00:02,  3.23 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:16<?, ? url/s]

Dl Size...:  92%|█████████| 74/80 [00:16<00:01,  3.26 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:16<?, ? url/s]

Dl Size...:  94%|█████████| 75/80 [00:16<00:01,  3.33 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:16<?, ? url/s]

Dl Size...:  95%|█████████▌| 76/80 [00:16<00:01,  3.36 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:17<?, ? url/s]

Dl Size...:  96%|█████████| 77/80 [00:17<00:00,  3.33 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:17<?, ? url/s]

Dl Size...:  98%|█████████| 78/80 [00:17<00:00,  3.37 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:17<?, ? url/s]

Dl Size...:  99%|█████████| 79/80 [00:17<00:00,  3.22 MiB/s]

Dl Completed...:   0%|          | 0/1 [00:17<?, ? url/s]

Dl Completed...: 100%|██████████| 1/1 [00:18<00:00, 18.17s/ url]

Dl Size...: 100%|██████████| 80/80 [00:18<00:00,  3.30 MiB/s]

Dl Size...: 100%|██████████| 80/80 [00:18<00:00,  4.40 MiB/s]

Dl Completed...: 100%|██████████| 1/1 [00:18<00:00, 18.19s/ url]

2020-08-11 05:12:33.707697: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

2020-08-11 05:12:33.717327: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2cfc5ef4840 initialized for platform Host (this does not guarantee that XLA will be used). Devices:

2020-08-11 05:12:33.717705: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version

2020-08-11 05:12:33.718160: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:

pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5

coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s

2020-08-11 05:12:33.718695: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

2020-08-11 05:12:33.718988: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll

2020-08-11 05:12:33.719280: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll

2020-08-11 05:12:33.719484: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll

2020-08-11 05:12:33.719627: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll

2020-08-11 05:12:33.719774: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll

2020-08-11 05:12:33.720091: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll

2020-08-11 05:12:33.720416: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0

2020-08-11 05:12:34.390731: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:

2020-08-11 05:12:34.391027: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]      0

2020-08-11 05:12:34.391187: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0:   N

2020-08-11 05:12:34.391527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6198 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 SUPER, pci bus id: 0000:09:00.0, compute capability: 7.5)

2020-08-11 05:12:34.395072: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2cfe70ccd90 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:

2020-08-11 05:12:34.395451: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce RTX 2080 SUPER, Compute Capability 7.5

2020-08-11 05:12:34.537614: W tensorflow/core/kernels/data/cache_dataset_ops.cc:794] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

 

 

O:\PycharmProjects\catdogtf2.2\venv\Scripts\python.exe O:\PyCharm\plugins\python\helpers\pydev\pydevconsole.py --mode=client --port=52502

import sys; print('Python %s on %s' % (sys.version, sys.platform))

sys.path.extend(['O:\\PycharmProjects\\catdogtf2.2', 'O:/PycharmProjects/catdogtf2.2'])

PyDev console: starting.

Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] on win32

>>> runfile('O:/PycharmProjects/catdogtf2.2/003.py', wdir='O:/PycharmProjects/catdogtf2.2')

2020-08-11 05:13:57.568884: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

버전:  2.2.0

즉시 실행 모드:  True

허브 버전:  0.8.0

2020-08-11 05:14:00.879870: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll

2020-08-11 05:14:00.922800: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:

pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5

coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s

2020-08-11 05:14:00.923333: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

2020-08-11 05:14:00.930349: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll

2020-08-11 05:14:00.936246: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll

2020-08-11 05:14:00.939358: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll

2020-08-11 05:14:00.946195: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll

2020-08-11 05:14:00.950313: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll

2020-08-11 05:14:00.967528: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll

2020-08-11 05:14:00.967911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0

GPU 사용 가능

2020-08-11 05:14:00.973950: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

2020-08-11 05:14:00.984209: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2226ccff3e0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:

2020-08-11 05:14:00.984530: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version

2020-08-11 05:14:00.984990: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:

pciBusID: 0000:09:00.0 name: GeForce RTX 2080 SUPER computeCapability: 7.5

coreClock: 1.845GHz coreCount: 48 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 462.00GiB/s

2020-08-11 05:14:00.985551: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll

2020-08-11 05:14:00.985809: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll

2020-08-11 05:14:00.986154: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll

2020-08-11 05:14:00.986450: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll

2020-08-11 05:14:00.986694: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll

2020-08-11 05:14:00.986984: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll

2020-08-11 05:14:00.987291: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll

2020-08-11 05:14:00.987605: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0

2020-08-11 05:14:01.809327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:

2020-08-11 05:14:01.809490: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108]      0

2020-08-11 05:14:01.809577: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0:   N

2020-08-11 05:14:01.810043: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6198 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2080 SUPER, pci bus id: 0000:09:00.0, compute capability: 7.5)

2020-08-11 05:14:01.815096: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x2220f136b30 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:

2020-08-11 05:14:01.815298: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): GeForce RTX 2080 SUPER, Compute Capability 7.5

2020-08-11 05:14:02.005695: W tensorflow/core/kernels/data/cache_dataset_ops.cc:794] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Model: "sequential"

_________________________________________________________________

Layer (type)                 Output Shape              Param #  

=================================================================

keras_layer (KerasLayer)     (None, 20)                400020   

_________________________________________________________________

dense (Dense)                (None, 16)                336      

_________________________________________________________________

dense_1 (Dense)              (None, 1)                 17       

=================================================================

Total params: 400,373

Trainable params: 400,373

Non-trainable params: 0

_________________________________________________________________

Epoch 1/20

2020-08-11 05:14:05.483625: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 4 in the outer inference context.

2020-08-11 05:14:05.483920: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 3 in the outer inference context.

2020-08-11 05:14:05.484223: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 2 in the outer inference context.

2020-08-11 05:14:05.484393: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 1 in the outer inference context.

2020-08-11 05:14:05.661180: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 4 in the outer inference context.

2020-08-11 05:14:05.661578: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 3 in the outer inference context.

2020-08-11 05:14:05.661921: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 2 in the outer inference context.

2020-08-11 05:14:05.662296: W tensorflow/core/common_runtime/shape_refiner.cc:88] Function instantiation has undefined input shape at index: 1 in the outer inference context.

2020-08-11 05:14:05.862861: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll

30/30 [==============================] - 2s 77ms/step - loss: 0.9824 - accuracy: 0.4959 - val_loss: 0.7466 - val_accuracy: 0.5309

Epoch 2/20

30/30 [==============================] - 2s 63ms/step - loss: 0.6758 - accuracy: 0.5873 - val_loss: 0.6331 - val_accuracy: 0.6114

Epoch 3/20

30/30 [==============================] - 2s 64ms/step - loss: 0.6032 - accuracy: 0.6542 - val_loss: 0.5875 - val_accuracy: 0.6675

Epoch 4/20

30/30 [==============================] - 2s 64ms/step - loss: 0.5615 - accuracy: 0.6960 - val_loss: 0.5546 - val_accuracy: 0.6944

Epoch 5/20

30/30 [==============================] - 2s 64ms/step - loss: 0.5261 - accuracy: 0.7221 - val_loss: 0.5262 - val_accuracy: 0.7258

Epoch 6/20

30/30 [==============================] - 2s 64ms/step - loss: 0.4938 - accuracy: 0.7515 - val_loss: 0.4988 - val_accuracy: 0.7450

Epoch 7/20

30/30 [==============================] - 2s 64ms/step - loss: 0.4632 - accuracy: 0.7757 - val_loss: 0.4738 - val_accuracy: 0.7636

Epoch 8/20

30/30 [==============================] - 2s 63ms/step - loss: 0.4335 - accuracy: 0.7958 - val_loss: 0.4511 - val_accuracy: 0.7811

Epoch 9/20

30/30 [==============================] - 2s 63ms/step - loss: 0.4051 - accuracy: 0.8124 - val_loss: 0.4291 - val_accuracy: 0.7933

Epoch 10/20

30/30 [==============================] - 2s 64ms/step - loss: 0.3793 - accuracy: 0.8265 - val_loss: 0.4112 - val_accuracy: 0.8127

Epoch 11/20

30/30 [==============================] - 2s 63ms/step - loss: 0.3532 - accuracy: 0.8447 - val_loss: 0.3921 - val_accuracy: 0.8124

Epoch 12/20

30/30 [==============================] - 2s 64ms/step - loss: 0.3298 - accuracy: 0.8587 - val_loss: 0.3778 - val_accuracy: 0.8323

Epoch 13/20

30/30 [==============================] - 2s 64ms/step - loss: 0.3074 - accuracy: 0.8713 - val_loss: 0.3630 - val_accuracy: 0.8384

Epoch 14/20

30/30 [==============================] - 2s 63ms/step - loss: 0.2867 - accuracy: 0.8837 - val_loss: 0.3511 - val_accuracy: 0.8370

Epoch 15/20

30/30 [==============================] - 2s 64ms/step - loss: 0.2676 - accuracy: 0.8936 - val_loss: 0.3404 - val_accuracy: 0.8460

Epoch 16/20

30/30 [==============================] - 2s 64ms/step - loss: 0.2502 - accuracy: 0.9006 - val_loss: 0.3318 - val_accuracy: 0.8513

Epoch 17/20

30/30 [==============================] - 2s 64ms/step - loss: 0.2345 - accuracy: 0.9081 - val_loss: 0.3253 - val_accuracy: 0.8579

Epoch 18/20

30/30 [==============================] - 2s 65ms/step - loss: 0.2197 - accuracy: 0.9150 - val_loss: 0.3219 - val_accuracy: 0.8656

Epoch 19/20

30/30 [==============================] - 2s 64ms/step - loss: 0.2057 - accuracy: 0.9225 - val_loss: 0.3145 - val_accuracy: 0.8608

Epoch 20/20

30/30 [==============================] - 2s 66ms/step - loss: 0.1934 - accuracy: 0.9298 - val_loss: 0.3126 - val_accuracy: 0.8656

49/49 - 2s - loss: 0.3249 - accuracy: 0.8554

loss: 0.325

accuracy: 0.855

 

 

 원래 잘 되던게 다시 해보면, 한 번에 되는게 없네 ㅋ 믓튼, 자료 준비 잼남. tutorials 소스 요청은 mynameis@hajunho.com 으로 (은근 일임)

 

반응형

'3D world > AI Integration Engineer' 카테고리의 다른 글

tutorials 05  (0) 2020.08.11
tutorials 04  (0) 2020.08.11
tutorials 02  (0) 2020.08.11
tutorial 01 running on pyCharm 2020.2 & 3.7  (1) 2020.08.11
Tensorflow, pytorch  (0) 2020.08.10
  • 네이버 블러그 공유하기
  • 네이버 밴드에 공유하기
  • 페이스북 공유하기
  • 카카오스토리 공유하기